Scaled free-energy based reinforcement learning for robust and efficient learning in high-dimensional state spaces

نویسندگان

  • Stefan Elfwing
  • Eiji Uchibe
  • Kenji Doya
چکیده

Free-energy based reinforcement learning (FERL) was proposed for learning in high-dimensional state- and action spaces, which cannot be handled by standard function approximation methods. In this study, we propose a scaled version of free-energy based reinforcement learning to achieve more robust and more efficient learning performance. The action-value function is approximated by the negative free-energy of a restricted Boltzmann machine, divided by a constant scaling factor that is related to the size of the Boltzmann machine (the square root of the number of state nodes in this study). Our first task is a digit floor gridworld task, where the states are represented by images of handwritten digits from the MNIST data set. The purpose of the task is to investigate the proposed method's ability, through the extraction of task-relevant features in the hidden layer, to cluster images of the same digit and to cluster images of different digits that corresponds to states with the same optimal action. We also test the method's robustness with respect to different exploration schedules, i.e., different settings of the initial temperature and the temperature discount rate in softmax action selection. Our second task is a robot visual navigation task, where the robot can learn its position by the different colors of the lower part of four landmarks and it can infer the correct corner goal area by the color of the upper part of the landmarks. The state space consists of binarized camera images with, at most, nine different colors, which is equal to 6642 binary states. For both tasks, the learning performance is compared with standard FERL and with function approximation where the action-value function is approximated by a two-layered feedforward neural network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

Reinforcement Learning Based PID Control of Wind Energy Conversion Systems

In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...

متن کامل

Free-energy-based reinforcement learning in a partially observable environment

Free-energy-based reinforcement learning (FERL) can handle Markov decision processes (MDPs) with high-dimensional state spaces by approximating the state-action value function with the negative equilibrium free energy of a restricted Boltzmann machine (RBM). In this study, we extend the FERL framework to handle partially observable MDPs (POMDPs) by incorporating a recurrent neural network that ...

متن کامل

Actor-Critic Reinforcement Learning with Energy-Based Policies

We consider reinforcement learning in Markov decision processes with high dimensional state and action spaces. We parametrize policies using energy-based models (particularly restricted Boltzmann machines), and train them using policy gradient learning. Our approach builds upon Sallans and Hinton (2004), who parameterized value functions using energy-based models, trained using a non-linear var...

متن کامل

A Function Approximation Method for Model-based High-Dimensional Inverse Reinforcement Learning

This works handles the inverse reinforcement learning problem in high-dimensional state spaces, which relies on an efficient solution of model-based high-dimensional reinforcement learning problems. To solve the computationally expensive reinforcement learning problems, we propose a function approximation method to ensure that the Bellman Optimality Equation always holds, and then estimate a fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013